Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.923
Filtrar
1.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579389

RESUMO

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Assuntos
Cobalto , Peróxido de Hidrogênio , Neoplasias , Óxidos , Humanos , Porosidade , Espécies Reativas de Oxigênio , Glucose Oxidase , Imidazóis , Carbono , Glutationa , Zinco , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Nano Lett ; 24(15): 4682-4690, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563501

RESUMO

Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in ∼5.9- and ∼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Glucose Oxidase/química , DNA/química
3.
Clin Oral Investig ; 28(5): 259, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639763

RESUMO

OBJECTIVES: Natural enzymes mouthwash has been proposed as salivary substitutes to treat xerostomia. This study aims to evaluate the efficacy of the mouthwash to treat xerostomia. MATERIALS AND METHODS: A double-blind, parallel group randomised control clinical trial involving N = 49 adult participants with xerostomia was carried out. Intervention group received natural enzymes moisturising mouthwash (with active ingredients lactoferrin, lysozyme, lactoperoxidase and glucose oxidase); while control group received benzydamine mouthwash. Mouthwashes were repacked, labelled with specific code, and were given to participants by third-party. Subjects were instructed to rinse with the mouthwash 4 times per day at a specific period, for 2 weeks. Symptoms of xerostomia were assessed using Xerostomia Inventory at day 0 and 14; together with the assessment of Clinical Oral Dryness Score (CODS), and measurement of resting and stimulated salivary flow rate. RESULTS: 48 participants completed the clinical follow-up, and n = 1 had lost of follow-up. From the 48 participants, n = 23 received natural enzymes mouthwash, while n = 25 received benzydamine mouthwash. Intervention group achieved reduction in symptoms of xerostomia from baseline. Intervention group also showed significantly better improvements in the cognitive perception of dry mouth and oromotor function such as chewing, swallowing and speech of the participants; and reduction in waking up at night to drink water (p < 0.05). The CODS and resting salivary flow rate were also significantly improved in intervention group (p < 0.05). CONCLUSION: Use of natural enzymes mouthwash improved signs and symptoms of xerostomia. CLINICAL RELEVANCE: Natural enzymes mouthwash is potentially effective to treat xerostomia, well-tolerated and safe to be used by xerostomia patients. CLINICAL TRIAL REGISTRATION NUMBER: This study was retrospectively registered in ClinicalTrials.gov ID NCT05640362 on 7 December 2022.


Assuntos
Benzidamina , Xerostomia , Adulto , Humanos , Antissépticos Bucais/uso terapêutico , Benzidamina/uso terapêutico , Xerostomia/tratamento farmacológico , Glucose Oxidase/uso terapêutico , Deglutição
4.
Nano Lett ; 24(15): 4691-4701, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588212

RESUMO

Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Radioimunoterapia , Glucose , Glucose Oxidase , Imunossupressores , Ácido Láctico , Neoplasias/terapia , Linhagem Celular Tumoral
5.
ACS Appl Mater Interfaces ; 16(14): 17313-17322, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534029

RESUMO

Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.


Assuntos
Neoplasias , Óxido Nítrico , Polietilenoglicóis , Polietilenoimina , Humanos , Nanogéis , Peróxido de Hidrogênio/química , Estudos Prospectivos , Neoplasias/patologia , Glucose Oxidase/química , Catálise , Glucose , Linhagem Celular Tumoral
6.
Carbohydr Res ; 538: 109096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531187

RESUMO

Hexaric acids have attracted attention lately because they are platform chemicals for synthesizing pharmaceuticals. In particular, gluconic acid is one of the most studied because it is readily available in nature. In this work, operational conditions like temperature and pH were evaluated for the enzymatic production of gluconic acid. For this purpose, glucose oxidase (GOx) and catalase (CAT) were individually immobilized and co-immobilized using amino-silica as support. The catalytic performance of the enzymes both as separate biocatalysts (GOx or CAT) and as an enzymatic complex (GOx-CAT) was assessed in terms of enzymatic activity and stability at temperatures 45 °C and 50 °C and pH 6 to 8. The results show that CAT is a key enzyme for gluconic acid production as it prevents GOx from being inhibited by H2O2. However, CAT was found to be less stable than GOx. Therefore, different GOx to CAT enzymatic ratios were studied, and a ratio of 1-3 was determined to be the best. The highest glucose conversion conditions were 45 °C and pH 7.0 for 24 h. Regarding the biocatalyst reuse, GOx-CAT retained more than 70% of its activity after 6 reaction cycles. These results contribute to further knowledge and application of oxidases for hexaric acid production and shed greater light on the role of the glucose oxidase/catalase pair in better catalytic performance. Both enzymes were immobilized in one pot, which is relevant for their potential use in industry; an enzyme system was obtained in a single step.


Assuntos
Gluconatos , Glucose Oxidase , Dióxido de Silício , Catalase , Peróxido de Hidrogênio , Porosidade , Enzimas Imobilizadas , Glucose
7.
ACS Appl Bio Mater ; 7(3): 1862-1877, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38450575

RESUMO

Elevated levels of reactive oxygen species (ROS) have demonstrated efficacy in eliminating tumor cells by modifying the tumor microenvironment and inducing the polarization of tumor-associated macrophages (TAMs). Nevertheless, the transient nature and limited diffusion distance inherent in ROS present significant challenges in cancer treatment. In response to these limitations, we have developed a nanoparticle (MnClPc-HSA@GOx) that not only inhibits tumor energy metabolism but also facilitates the transition of TAMs from the M2 type (anti-inflammatory type) to the M1 type (proinflammatory type). MnClPc-HSA@GOx comprises a manganese phthalocyanine complex (MnClPc) enveloped in human serum albumin (HSA), with glucose oxidase (GOx) loaded onto MnClPc@HSA nanoparticles. GOx was employed to catalyze the decomposition of glucose to produce H2O2 and gluconic acid. Additionally, in the presence of MnClPc, it catalyzes the conversion of H2O2 into •O2- and 1O2. Results indicate that the nanoparticle effectively impedes the glucose supply to tumor cells and suppresses their energy metabolism. Simultaneously, the ROS-mediated polarization of TAMs induces a shift from M2 to M1 macrophages, resulting in a potent inhibitory effect on tumors. This dual-action strategy holds promising clinical inhibition applications in the treatment of cancer.


Assuntos
Isoindóis , Nanopartículas , Neoplasias , Humanos , Manganês/farmacologia , Glucose Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Neoplasias/metabolismo , Macrófagos , Oxigênio/metabolismo , Metabolismo Energético , Glucose , Microambiente Tumoral
8.
Biosens Bioelectron ; 253: 116191, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460209

RESUMO

To alleviate the discomfort associated with frequent blood glucose detection in diabetic patients, a novel non-invasive tear glucose biosensor has been developed. This involved the design and preparation of a photoelectrochemical probe based on an optical fiber and biological enzymes. One end of the optical fiber connects to a light source, acting as an energy source and imparting, self-powered capability to the biosensor. The opposite end is loaded with nanomaterials and glucose oxidase, designed for insertion into the sample to realize photoelectrochemical sensing. This innovative configuration not only improves the integration of the biosensor but is also suitable for analyzing minuscule voluminal samples. The results show that the proposed biosensor exhibits a linear range from 10 nM to 100 µM, possesses a low detection limit of 4.1 nM and a short response time of 0.7 s. Benefiting from the high selectivity of the enzyme, the proposed biosensor demonstrates excellent resistance to the interference of common tear components. In summary, this work provides a more effective method for non-invasive glucose detection and affords valuable ideas for the design and fabrication of non-invasive and self-powered biosensors.


Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Humanos , Técnicas Biossensoriais/métodos , Glucose , Glicemia , Glucose Oxidase
9.
Nano Lett ; 24(12): 3801-3810, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477714

RESUMO

The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.


Assuntos
Chlorella , Microalgas , Neoplasias , Animais , Camundongos , Hidrogéis , Glucose Oxidase , Fotossíntese , Hipóxia , Oxigênio , Imunoterapia , Alginatos , Microambiente Tumoral
10.
Biosensors (Basel) ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38534241

RESUMO

Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer-(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were prepared and tested. Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 µA/(mM cm2), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage stability. The developed glucose biosensors based on GR/PtNS/PD/GOx/Ppy electrodes showed exceptional resistance to interfering compounds and proved to be highly efficient for the determination of glucose levels in blood serum.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Glucose/química , Polímeros/química , Pirróis/química , Platina , Reprodutibilidade dos Testes , Eletrodos , Glucose Oxidase/química , Enzimas Imobilizadas/química
11.
Biosensors (Basel) ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534245

RESUMO

This paper describes the study of an amperometric glucose biosensor based on an enzymatic biofuel cell consisting of a bioanode and a biocathode modified with the same enzyme-glucose oxidase (GOx). A graphite rod electrode (GRE) was electrochemically modified with a layer of Prussian blue (PB) nanoparticles embedded in a poly(pyrrole-2-carboxylic acid) (PPCA) shell, and an additional layer of PPCA and was used as the cathode. A GRE modified with a nanocomposite composed of poly(1,10-phenanthroline-5,6-dione) (PPD) and gold nanoparticles (AuNPs) entrapped in a PPCA shell was used as an anode. Both electrodes were modified with GOx by covalently bonding the enzyme to the carboxyl groups of PPCA. The developed biosensor exhibited a wide linear range of 0.15-124.00 mM with an R2 of 0.9998 and a sensitivity of 0.16 µA/mM. The limit of detection (LOD) and quantification (LOQ) were found to be 0.07 and 0.23 mM, respectively. The biosensor demonstrated exceptional selectivity to glucose and operational stability throughout 35 days, as well as good reproducibility, repeatability, and anti-interference ability towards common interfering substances. The studies on human serum demonstrate the ability of the newly designed biosensor to determine glucose in complex real samples at clinically relevant concentrations.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Glucose , Ouro/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Enzimas Imobilizadas/química , Glucose Oxidase/química , Eletrodos
12.
Microb Cell Fact ; 23(1): 76, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461254

RESUMO

BACKGROUND: Aspergillus niger ATCC 20611 is an industrially important fructooligosaccharides (FOS) producer since it produces the ß-fructofuranosidase with superior transglycosylation activity, which is responsible for the conversion of sucrose to FOS accompanied by the by-product (glucose) generation. This study aims to consume glucose to enhance the content of FOS by heterologously expressing glucose oxidase and peroxidase in engineered A. niger. RESULTS: Glucose oxidase was successfully expressed and co-localized with ß-fructofuranosidase in mycelia. These mycelia were applied to synthesis of FOS, which possessed an increased purity of 60.63% from 52.07%. Furthermore, peroxidase was expressed in A. niger and reached 7.70 U/g, which could remove the potential inhibitor of glucose oxidase to facilitate the FOS synthesis. Finally, the glucose oxidase-expressing strain and the peroxidase-expressing strain were jointly used to synthesize FOS, which content achieved 71.00%. CONCLUSIONS: This strategy allows for obtaining high-content FOS by the multiple enzymes expressed in the industrial fungus, avoiding additional purification processes used in the production of oligosaccharides. This study not only facilitated the high-purity FOS synthesis, but also demonstrated the potential of A. niger ATCC 20611 as an enzyme-producing cell factory.


Assuntos
Aspergillus niger , Aspergillus , beta-Frutofuranosidase , Aspergillus niger/genética , Glucose Oxidase/genética , Oligossacarídeos , Peroxidases , Glucose
13.
Anal Chim Acta ; 1298: 342408, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462333

RESUMO

BACKGROUND: In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS: A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE: This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.


Assuntos
Ácido 4-Aminobenzoico , Inibidores de Glicosídeo Hidrolases , Inibidores de Glicosídeo Hidrolases/farmacologia , Glucose Oxidase , Reprodutibilidade dos Testes , Colorimetria/métodos , Peroxidases , Solventes , Peróxido de Hidrogênio
14.
Talanta ; 273: 125863, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460424

RESUMO

The development of rapid screening sensing platforms to improve pre-screening mechanisms in community healthcare is necessary to meet the significant need for portable testing in biomarker diagnostics. Here, we designed a portable smartphone-based photoelectrochemical (PEC) immunoassay for carcinoembryonic antigen (CEA) detection using Cu-doped ultrathin porous Bi2WO6 (CuBWO) nanosheets as the photoactive material. The CuBWO nanosheets exhibit a fast photocurrent response and excellent electrical transmission rate under UV light due to their surface plasmon resonance effect (SPR). The method uses glucose oxidase-labeled secondary antibody as a signal indicator for sandwich-type immune conjugation. In the presence of the target CEA, the electrons and holes generated at the surface of the photo-excited ultrathin porous CuBWO were rapidly consumed by the production of H2O2 from glucose oxidase oxidizing glucose, resulting in a weakened photocurrent signal. The photocurrent intensity increased logarithmically and linearly with increasing CEA concentration (0.02-50 ng mL-1), with a detection limit of 15.0 pg mL-1 (S/N = 3). The system provides a broader idea for inferring the electron-hole transport mechanism in ultrathin porous nanosheet layer materials and developing efficient PEC sensors.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais/métodos , Glucose Oxidase , Antígeno Carcinoembrionário , Peróxido de Hidrogênio , Porosidade , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
15.
Talanta ; 273: 125933, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503127

RESUMO

Continuous glucose monitoring is very important to daily blood glucose control in diabetic patients, but its accuracy is limited by the narrow linear range of the response of biosensor to the glucose concentration because of the oxygen starvation in tissue and the limited maximum conversion rate of glucose oxidase. In this work, a biocompatible diffusion limiting membrane based on two medical-grade polyurethanes is developed via blending modification to restrict the diffusion flux of glucose to match the oxygen concentration and the maximum conversion rate. The expansiveness of the linear range for the nanomaterials-modified electrode in the glucose biosensor can be achieved through the regulation of two polyurethanes, the solvent, and the thickness of the membrane. In addition, the mass transport of hydrogen peroxide and interfering substances is also limited of the membrane. The in vitro experiments demonstrated that the membrane-modified microneedle biosensor exhibited a rapid response to the concentration variation of glucose, a wide linear range that is sufficient to cover the blood concentration of healthy and diabetic people, the ability to resist the oxygen concentration fluctuation and interfering substances, good reproducibility and long-term stability. The custom wearable electrochemical system, possessing these characteristics, has been proven to accurately monitor the blood concentration in a living rat in real time. This demonstrates a significant potential for application in both daily and clinical blood glucose monitoring.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Humanos , Ratos , Animais , Glicemia , Automonitorização da Glicemia , Poliuretanos , Reprodutibilidade dos Testes , Glucose , Eletrodos , Oxigênio , Glucose Oxidase/química
16.
Mikrochim Acta ; 191(4): 201, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489138

RESUMO

Nowadays, the frequent occurrence of food adulteration makes glucose detection particularly important in food safety and quality management. The quality and taste of honey are closely related to the glucose content. However, due to the drawbacks of expensive equipment, complex operating procedures, and time-consuming processes, the application scope of traditional glucose detection methods is limited. Hence, this study developed a photoelectric chemical (PEC) sensor, which is composed of a photoactive material of bismuth tungstate (Bi2WO6) with titanium dioxide (TiO2) and glucose oxidase (GOD), for simple and rapid detection of glucose. Notably, the composites' absorption prominently increased in the visible light region, and the photo-generated electron-hole pairs were efficiently separated by virtue of the unique nanostructure system, thus playing a crucial role in facilitating PEC activity. In the presence of dissolved oxygen, the photocurrent intensity was enhanced by H2O2 generated from glucose under electro-oxidation specifically catalyzed by GOD fixed on the modified electrode. When the working potential was 0.3 V, the changes of photocurrent response indicated that the PEC enzyme biosensor provides a low detection limit (3.8 µM), and a wide linear range (0.008-8 mM). This method has better selectivity in honey samples and broad application prospects in clinical diagnosis for future.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos , Luz , Glucose , Glucose Oxidase/química
17.
J Colloid Interface Sci ; 663: 396-404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412725

RESUMO

The lack of selective release ability in the tumor microenvironment and the limited efficacy of monotherapy are important factors that limit the current use of carbon monoxide (CO) donors for tumor therapy. Herein, inspired by endogenous biochemical reactions in vivo, one kind of CO-releasing nanomotor was designed for the multimodal synergistic treatment of tumor. Specifically, glucose oxidase (GOx) and 5-aminolevulinic acid (5-ALA) were co-modified onto metal-organic framework material (MIL-101) to obtain MIL-GOx-ALA nanomotors (M-G-A NMs), which exhibit excellent biocompatibility and degradation ability in tumor microenvironment. Subsequently, the released 5-ALA generates CO in the tumor microenvironment through an endogenous reaction and further acts on mitochondria to release large amounts of reactive oxygen species (ROS), which directly kill tumor cells. Furthermore, the produced ROS and the degradation products of M-G-A NMs can also provide the reaction substrate for the Fenton reaction, thereby enhancing chemodynamic therapy (CDT) and inducing apoptosis of tumor cells. Both in vitro and in vivo experimental data confirm the successful occurrence of the above process, and the combination of CO gas therapy/enhanced CDT can effectively inhibit tumor growth. This CDT-enhancing agent designed based on endogenous biochemical reactions has good prospects for tumor treatment application.


Assuntos
Nanopartículas , Neoplasias , Humanos , Monóxido de Carbono , Espécies Reativas de Oxigênio , Terapia Combinada , Ácido Aminolevulínico , Apoptose , Glucose Oxidase , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123980, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335589

RESUMO

Fluorescent copper nanoparticles (CuNPs) was synthesized by one-step chemical reduction method using ascorbic acid (AA) and copper sulfate (CuSO4⋅5H2O) as raw materials, which had good water solubility and fluorescence properties. A green, simple and safe CuNPs@Fe2+ fluorescence probe was developed for the detection of hydrogen peroxide and glucose using Fe2+ as a bridge. The prepared CuNPs could obtain the maximum fluorescence emission wavelength at 440 nm when the excitation wavelength was 360 nm. The average particle size of CuNPs was 10 nm, which had good photobleach resistance, stability and salt tolerance. The fluorescence intensity was quenched due to electron transfer (ET) process when hydrogen peroxide was added to CuNPs@Fe2+ system. This result was mainly because Fenton reaction occured between hydrogen peroxide and Fe2+, producing hydroxyl free radicals (OH) and Fe3+. Since glucose could be catalyzed by specific glucose oxidase (GOX) to produce H2O2 and corresponding oxidation products, the quantitative analysis of glucose was realized when glucose oxidase was introduced into the CuNPs@Fe2+ sensor system. Therefore, a novel CuNPs@Fe2+ fluorescent probe sensor study was constructed to further achieve quantitative detection of H2O2 and glucose. Under the optimized experimental conditions, the linear ranges for H2O2 and glucose were 28.219-171.562 µM and 1.237-75.771 µM, respectively. And the detection limits for H2O2 and glucose were 7.169 µM and 0.540 µM, respectively. In addition, the mechanism of fluorescence probe quenching caused by the interaction between H2O2 and CuNPs@Fe2+ was also discussed. The proposed sensing system had been applied successfully to the detection of glucose in human serum samples.


Assuntos
Glucose , Nanopartículas , Humanos , Glucose/análise , Peróxido de Hidrogênio/análise , Cobre/química , Corantes Fluorescentes/química , Glucose Oxidase , Limite de Detecção
19.
Sci Rep ; 14(1): 3324, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336966

RESUMO

Enzymatic biofuel cells (EBFCs) hold tremendous potential to power biomedical devices, biosensors, and bioelectronics. Unlike conventional toxic batteries, these electrochemical devices are biocompatible, harnessing energy from physiological fluids and producing usable electrical energy. But the commercialization of EBFCs is limited by the low operational stability, limited power output and poor electron transport efficiency of the enzymatic electrodes. In this study, a novel bioanode exhibiting a high electron transfer ability and long-term stability was fabricated. For the preparation of the anode, surfactant-assisted polypyrrole (PPy) was electrochemically co-deposited on a platinum wire with the simultaneous entrapment of vitamin K3 (VK3) and GOx (glucose oxidase) in the PPy matrix. Herein, conducting PPy acts as an electron transfer enhancer and provides appropriate electrical communication between the active site of the enzyme glucose oxidase (GOx) and the electrode surface. Biocompatible redox mediator vitamin K3 was employed as an electron transfer mediator to shuttle electrons between the oxidized fuel glucose and surface of the electrode in the electrochemical cell. The electrical conductivity of PPy was measured using the four-probe technique of conductivity measurement of semiconductors. The morphological characterization of as-synthesized anode (PPy/CTAB/VK3/GOx) was performed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization was studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques. It was observed that the room-temperature conductivity of PPy lies in the semiconducting range and it also shows good stability on exposure to laboratory air, making it a promising material to provide electrical contact. The study developed a bioanode producing a modest current density of 6.35 mA cm-2 in 20 mM glucose solution. The stability, current output and ease of manufacturing process of the electrode make it particularly suitable for employment in biofuel cell applications.


Assuntos
Fontes de Energia Bioelétrica , Polímeros/química , Pirróis/química , Glucose Oxidase/química , Oxirredução , Eletrodos , Glucose/metabolismo , Vitamina K
20.
Acta Biomater ; 177: 431-443, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307478

RESUMO

The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Terapia Fototérmica , Catálise , Glucose , Glucose Oxidase , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...